An Investigation in to the Use of Ground Nutshell Ashpowder as Cement Replacement

MR.V.RAGHUPRASATH^a,KAVITHA.K^b,ABDULRAHIM.M^b,JAYARAJ.A^b, MUHAMMED FASIL.P^b

^aAssistantProfessor, Department of civil Engineering,

ShreeVenkateshwaraHi-TechEngineeringCollege,Gobichettipalayam,Erode-638455, India

^bUG Scholar, BE Civil Engineering, Department of Civil Engineering, Shree VenkateshwaraHi-TechEngineeringCollege,Gobichettipalayam,Erode-638455,India

ABSTRACT

Concrete plays a prominent role in the construction industry. In the present scenario, there is a short a geofthismaterial so there is a need to find alternatives to replace it in the concrete many waste products which are available freely like a paperwaste, redmud, rice huskandplastic waste can be used. Among all of these, Ground nut shell ashis one of the good waste materials available from the oil industry. It can be used widely for the replacement of cement. The ground net shell contains CaO, SiO2, Al2O3, and Fe2O3. This experimental investigation was carried out to evaluate the strength of concrete, in which cement was replaced with ground nut shell ash for cubes, cylinders, and Prisms with different percentageswhichvaryfrom0%to40%at an interval of 15% were performed.

Concrete was batched by weight on adopting a ratio of 1:1.5:3 with water– cementratioof0.4.TheseCubes,cylinders, andprismsweretestedfor7and28daysfor compression, flexural and split tensile strengths. It is observed that 15% replacement ofground nut shell ash shown thehighest strengthvalueswhencompared with other percentages and for 15%

keyword: Groundnut shell ash powder, M20 mix design, OPC 53 grade cement, compressive strength &tensile strength

INTRODUCTION

General

The continuous increase in the price of Portland cement is attributed to the insufficient production rate of the raw materials when compared withthe demand rateintheconstructionindustriesGround nut shell ash was partially used cement in concrete. Thus, the possible use of agriculture waste Groundnut shell ash (GSA) is one of the potential waste materials to be used for cement replacement.

Scope

Toanalysingexperimentalstudyof ground nut shell ash partially replacement of cement in concrete. The utilization of ground nut shell ash reduces the environmental problemsGSA/OPC concrete were cured in cubes of 100mm dimensionfor7,14,21and28daysandthe compressive strength density and determinedThegroundnutshellashmaybe used as a partial replacement of cement.

Advantages

the strength of the control was higher, replacement ofcement withashup to 30% wouldbemoresuitablethanothers.

Groundnut

shellsashcanbeusedasasourceoffuelfor cooking, heating, andelectricitygeneration. Groundnut shell ash (GSA) is one of the potential waste materials to be used for cementreplacementThisarticleincludesan experimental investigation on the properties of stabilized earth blocks using GSA as a cement substitute.

METHODOLOGY

MATERIALSCHARACTERISTICS

Cement

Cement is an extremely fine material having adhesive and cohesive properties which provides a binding medium for the discrete ingredients. Cement is several times stronger binding material than lime and clay. OPC cement are using53 grade cement for concrete.

MSand

M Sand is known for its uniform and consistent particle size distribution, which is one of its key advantages over natural river sand.

Coarseaggregate

Coarse aggregates are a construction component made of rock quarried from ground deposits. Typically the most common size of aggregate used in construction is 20mm.

Ground nutshellash powder

Groundnut shell ash is a by product obtained from the burning of groundnut shells.GSAcontainsappreciableamountof active silica (SiO2) and other refractory oxides such as Alumina (Al2O3) and hematite (Fe2O3).

Water

Wateristhekeyingredient, which when mixed with cement, forms a paster that binds the aggregate together. The water cause the hardening of concrete through a process called hydration.

PROPERTIES OFMATERIALS

Cement

Characteristics	Valuespecified byIS
SpecificGravity	3.13
Consistency(%)	35%
InitialSettingTime	30 (minutes)
FinalSettingTime	600(minutes)

MSand

Characteristics	Valuespecified byIS
Bulkdensity	1.78Kg/m ³
Finenessmodulus	2.10
Specificgravity	2.34
Waterabsorption(%)	2.42

Coarseaggregate

Characteristics	Valuespecified byIS
colour	grey
Size	20mm
Shape	Angular
SpecificGravity	2.74

Ground nutshellash powder

Characteristics	Valuespecified	
Characteristics	byIS	
Moisturecontent	9.755	
Ashcontent	3.465	
Cellulose	45.101	
Hemicellulose	26.816	
Lignin	33.600	

TESTING

COMPRESSIVE STRENGTH FOR GROUND NUT SHELL ASH

Compressivestrengthafter7daysfor cube

S	Mix	Compress	Average
N.	Descrinti	ive	Compress
	Descripti	strength	ive
U	o on	(N/mm ²)	(N/mm ²)
1	Conventio	12.49	12.08
1	nal mix	11.67	12.00
2	2 10%	18.43	18.08
2		19.54	10.90
3	15%	21.67	22.065
5	1.3 70	22.45	22.005
4	30%	20.45	20.08
		19.90	20.70

Compressivestrengthafter28daysfor cube

S. N	Mix Descripti on	Compress ive strength (N/mm ²)	Average Compress ive strength (N/mm ²)
1	Conventio	26.56	25.23
1	nalmix	23.90	23.23
2	2 10%	21.78	22.29
		22.80	22.29
2	150/	28.29	20.29
3	15%	30.27	29.28
Δ	30%	24.76	24.15
+	5070	23.54	24.13

SPLITTENSILESTRENGTHFOR GROUND NUT SHELL ASH

TableSplittensilestrengthofcylinder

for 7 days

Mix	Splittensile strength (N/mm2)		Average Split tensile
(%)	Specime n1	Specime n2	strength (N/mm2)
0	2.34	2.78	2.57
10%	2.11	1.98	2.045
15%	2.79	2.90	2.845
30%	1.98	1.95	1.965

Splittensilestrengthofcylinderfor28 days

Mix	Split tensile strength(N/mm2)		Average Split
(%)	Specime n 1	Specime n 2	tensile strength (N/mm2)
0	2.11	2.99	2.55
10%	2.87	2.98	2.925
15%	3.15	3.18	3.165
30%	2.97	2.87	2.92

RESULT

Compressivestrengthafter7daysfor

concrete

Compressivestrengthafter28daysfor

concrete

Splittensilestrengthofcylinderfor7 days

Splittensilestrengthofcylinderfor28 days

CONCLUSION

Inthisproject, an experimental study has been conducted on concrete by varying the percentage of ground nut shell ash powder as 0%, 10%, 15% and 30% respectively to study the increase in the compressive strength of concrete.

COMPRESSIVESTRENGTH

After adding 15% ash powder in the mix,thereisanincreaseinthestrengthof cube after 7 daysBy adding 15%, ash powder there is large amount of increase in strength after 7 and 28 days respectively. The optimum strength of cube is gain at 15% replacement for all 7 and 28 days respectively

SPLITTENSILESTRENGTH

After adding 15% ash powder in themix,thereisanincreaseinthestrength ofcylinderafter7daysascomparedto concretewithout replacement and after 28 days there is enormous increase in strength as compared to the control mix.By adding 20% ash powder there is large amount of increase in strength after 7 and 28 days respectivelyThe optimum strength of cylinderisgainat15% replacementforall 7 and 28 days respectively.

REFERENCE

- A. Amaliyah et al., "Accelerated e-Learning Implementation through Youtube Videos Using Smartphones," in Journal of Physics: Conference Series, 2021, vol. 1899, no. 1, doi: 10.1088/1742-6596/1899/1/012155
- A.W.Abro,A.Kumar,M.A.Keerio,
 Z.H.Shaikh,N.Bheel,andA.A.Dayo,
 "An Investigation on Compressive
 Strength of Concrete Blended With
 Groundnut Shell Ash," Neutron,vol.
 20,no.2,pp.123–127,
 2021.
- A. M. Braga, J. D. Silvestre, and J. de Brito, "Compared environmental and economicimpact fromcradleto gateof concrete with natural and recycled coarseaggregates,"J.Clean.Prod.,vol. 162,pp.529–543,2017,doi: 10.1016/j.jclepro.2017.06.057.
- M.C.Collivignarelliet al., "The Production of Sustainable Concrete

withtheUseofAlternativeAggregates

: A Review," Sustainability, vol. 12, no. 19, p. 7903, Sep. 2020, doi: 10.3390/su12197903

- T.Kiran,S.K.Yadav,N.Anand,M.
 E. Mathews, D. Andrushia, and V. Kodur, "Performance evaluation of lightweight insulating plaster for enhancing the fire endurance of high strength structural concrete," J. Build. Eng., vol. 57, p. 104902, 2022.
- M.S.Kahar,Susilo,D.Abdullah,and
 V.Oktaviany, "Theeffectivenessofthe integrated inquiry guided model stem onstudentsscientific literacyabilities," Int. J. Nonlinear Anal. Appl., vol. 13, no. 1, 2022, doi: 10.22075/IJNAA.2022.5782.
- M.Marvila,P.deMatos,E.Rodríguez, S.N. Monteiro,andA.R.
 G. de Azevedo, "Recycled Aggregate: A Viable Solution for Sustainable Concrete Production," Materials (Basel).,vol.15,no.15,p.5276,Jul. 2022,doi: 10.3390/ma15155276.
- M. V Raut, "Leverage of high-volume fly ash along with glass fiber for sustainable concrete," 2022
- S. B. Raheem, G. F. Oladiran, F. A. Olutoge, and T. Odewumi, "Strength propertiesofgroundnutshellash(GSA) blended concrete," 2013.